3G Evolution, HSPA and LTE for Mobile Broadband

MForum.ru

3G Evolution, HSPA and LTE for Mobile Broadband


3G Evolution, HSPA and LTE for Mobile Broadband. Erik Dahlman, Stefan Parkvall, Johan Skoeld, Per Beming, 2nd edition, 651 pages

 

3G Evolution, HSPA and LTE for Mobile Broadband

Contents

List of Figures xv

List of Tables xxvii

Preface xxix

Acknowledgements xxxi

List of Acronyms xxxiii

Part I: Introduction 1

 1 Background of 3G evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 History and background of 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Before 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Early 3G discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Research on 3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 3G standardization starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The standardization process . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 3GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 IMT-2000 activities in ITU . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Spectrum for 3G and systems beyond 3G . . . . . . . . . . . . . . . . . . . . . 13 

2 The motives behind the 3G evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1 Driving forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Technology advancements . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Cost and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 3G evolution: Two Radio Access Network approaches

and an evolved core network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Radio Access Network evolution . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 An evolved core network: system architecture

evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi 

Part II: Technologies for 3G Evolution 27

 

3 High data rates in mobile communication . . . . . . . . . . . . . . . . . . . . . . . 293.1 High data rates: Fundamental constraints . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 High data rates in noise-limited scenarios . . . . . . . . . . . . . . 31

3.1.2 Higher data rates in interference-limited scenarios . . . . . . . 33

3.2 Higher data rates within a limited bandwidth: Higher-order . . . . . . . .

modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Higher-order modulation in combination with

channel coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Variations in instantaneous transmit power . . . . . . . . . . . . . 36

3.3 Wider bandwidth including multi-carrier transmission . . . . . . . . . . 37

3.3.1 Multi-carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

4 OFDM transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.1 Basic principles of OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 OFDM demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 OFDM implementation using IFFT/FFT processing . . . . . . . . . . . . 46

4.4 Cyclic-prefix insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Frequency-domain model of OFDM transmission . . . . . . . . . . . . . . 51

4.6 Channel estimation and reference symbols . . . . . . . . . . . . . . . . . . . . 52

4.7 Frequency diversity with OFDM: Importance of channel coding . . 53

4.8 Selection of basic OFDM parameters . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8.1 OFDM subcarrier spacing . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8.2 Number of subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.3 Cyclic-prefix length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Variations in instantaneous transmission power . . . . . . . . . . . . . . . . 58

4.10 OFDM as a user-multiplexing and multiple-access scheme . . . . . . . 59

4.11 Multi-cell broadcast/multicast transmission and OFDM . . . . . . . . . 61 

5 Wider-band Ў® single-carrier ЎЇ transmission . . . . . . . . . . . . . . . . . . . . . . . 655.1 Equalization against radio-channel frequency selectivity . . . . . . . . . 65

5.1.1 Time-domain linear equalization . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Frequency-domain equalization . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Other equalizer strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Uplink FDMA with flexible bandwidth assignment . . . . . . . . . . . . . 71

5.3 DFT-spread OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 DFTS-OFDM receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 User multiplexing with DFTS-OFDM . . . . . . . . . . . . . . . . . 77

5.3.4 Distributed DFTS-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Contents

vii 

6 Multi-antenna techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816.1 Multi-antenna configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Benefits of multi-antenna techniques . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Multiple receive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Multiple transmit antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.1 Transmit-antenna diversity . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.2 Transmitter-side beam-forming . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Spatial multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.2 Pre-coder-based spatial multiplexing . . . . . . . . . . . . . . . . . 100

6.5.3 Non-linear receiver processing . . . . . . . . . . . . . . . . . . . . . . 102 

7 Scheduling, link adaptation and hybrid ARQ . . . . . . . . . . . . . . . . . . . 1057.1 Link adaptation: Power and rate control . . . . . . . . . . . . . . . . . . . . . 106

7.2 Channel-dependent scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.2 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.3 Link adaptation and channel-dependent scheduling

in the frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.4 Acquiring on channel-state information . . . . . . . . . . . . . . . 116

7.2.5 Traffic behavior and scheduling . . . . . . . . . . . . . . . . . . . . . 117

7.3 Advanced retransmission schemes . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

Part III: HSPA 125

 

8 WCDMA evolution: HSPA and MBMS . . . . . . . . . . . . . . . . . . . . . . . . 1278.1 WCDMA: Brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1.1 Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1.2 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1.3 Resource handling and packet-data session . . . . . . . . . . . . 137 

9 High-Speed Downlink Packet Access . . . . . . . . . . . . . . . . . . . . . . . . . . 1399.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.1.1 Shared-channel transmission . . . . . . . . . . . . . . . . . . . . . . . 139

9.1.2 Channel-dependent scheduling . . . . . . . . . . . . . . . . . . . . . 140

9.1.3 Rate control and higher-order modulation . . . . . . . . . . . . . 142

9.1.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 142

9.1.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.2 Details of HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Contents

viii

9.2.1 HS-DSCH: Inclusion of features in WCDMA

Release 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2.2 MAC-hs and physical-layer processing . . . . . . . . . . . . . . . 147

9.2.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2.4 Rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.5 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 154

9.2.6 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.2.7 Resource control for HS-DSCH . . . . . . . . . . . . . . . . . . . . . 159

9.2.8 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.2.9 UE categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.3 Finer details of HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.3.1 Hybrid ARQ revisited: Physical-layer processing . . . . . . . 162

9.3.2 Interleaving and constellation rearrangement . . . . . . . . . . 167

9.3.3 Hybrid ARQ revisited: Protocol operation . . . . . . . . . . . . . 168

9.3.4 In-sequence delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.3.5 MAC-hs header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.3.6 CQI and other means to assess the downlink quality . . . . . 174

9.3.7 Downlink control signaling: HS-SCCH . . . . . . . . . . . . . . . 177

9.3.8 Downlink control signaling: F-DPCH . . . . . . . . . . . . . . . . 180

9.3.9 Uplink control signaling: HS-DPCCH . . . . . . . . . . . . . . . . 180 

10 Enhanced Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18510.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

10.1.1 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.1.2 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 188

10.1.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.2 Details of Enhanced Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.2.1 MAC-e and physical layer processing . . . . . . . . . . . . . . . . 193

10.2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.2.3 E-TFC selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.2.4 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 203

10.2.5 Physical channel allocation . . . . . . . . . . . . . . . . . . . . . . . . 208

10.2.6 Power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.2.7 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10.2.8 Resource control for E-DCH . . . . . . . . . . . . . . . . . . . . . . . 212

10.2.9 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10.2.10 UE categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10.3 Finer details of Enhanced Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.3.1 Scheduling ЁC the small print . . . . . . . . . . . . . . . . . . . . . . . . 214

10.3.2 Further details on hybrid ARQ operation . . . . . . . . . . . . . . 223

10.3.3 Control signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Contents

ix 

11 MBMS: Multimedia Broadcast Multicast Services . . . . . . . . . . . . . . . 23911.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

11.1.1 Macro-diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

11.1.2 Application-level coding . . . . . . . . . . . . . . . . . . . . . . . . . . 245

11.2 Details of MBMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

11.2.1 MTCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

11.2.2 MCCH and MICH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

11.2.3 MSCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 

12 HSPA Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25112.1 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

12.1.1 HSDPA-MIMO data transmission . . . . . . . . . . . . . . . . . . . 252

12.1.2 Rate control for HSDPA-MIMO . . . . . . . . . . . . . . . . . . . . 256

12.1.3 Hybrid-ARQ with soft combining for HSDPA-MIMO . . . 256

12.1.4 Control signaling for HSDPA-MIMO . . . . . . . . . . . . . . . . 257

12.1.5 UE capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

12.2 Higher-order modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

12.3 Continuous packet connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

12.3.1 DTXЁCreducing uplink overhead . . . . . . . . . . . . . . . . . . . . . 261

12.3.2 DRXЁCreducing UE power consumption . . . . . . . . . . . . . . 264

12.3.3 HS-SCCH-less operation: downlink overhead reduction . . 265

12.3.4 Control signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

12.4 Enhanced CELL_FACH operation . . . . . . . . . . . . . . . . . . . . . . . . . 267

12.5 Layer 2 protocol enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

12.6 Advanced receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

12.6.1 Advanced UE receivers specified in 3GPP . . . . . . . . . . . . 271

12.6.2 Receiver diversity (type 1) . . . . . . . . . . . . . . . . . . . . . . . . 271

12.6.3 Chip-level equalizers and similar receivers (type 2) . . . . . 272

12.6.4 Combination with antenna diversity (type 3) . . . . . . . . . . . 273

12.6.5 Combination with antenna diversity and interference

cancellation (type 3i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

12.7 MBSFN operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

12.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 

Part IV: LTE and SAE 277

 

13 LTE and SAE: Introduction and design targets . . . . . . . . . . . . . . . . . 27913.1 LTE design targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

13.1.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

13.1.2 System performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Contents

x

13.1.3 Deployment-related aspects . . . . . . . . . . . . . . . . . . . . . . . . 283

13.1.4 Architecture and migration . . . . . . . . . . . . . . . . . . . . . . . . 285

13.1.5 Radio resource management . . . . . . . . . . . . . . . . . . . . . . . 286

13.1.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

13.1.7 General aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

13.2 SAE design targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 

14 LTE radio access: An overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28914.1 LTE transmission schemes: Downlink OFDM and

uplink DFTS-OFDM/SC-FDMA . . . . . . . . . . . . . . . . . . . . . . . . . . 289

14.2 Channel-dependent scheduling and rate adaptation . . . . . . . . . . . . 291

14.2.1 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

14.2.2 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

14.2.3 Inter-cell interference coordination . . . . . . . . . . . . . . . . . . 293

14.3 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . . . . . . . . 294

14.4 Multiple antenna support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

14.5 Multicast and broadcast support . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

14.6 Spectrum flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

14.6.1 Flexibility in duplex arrangement . . . . . . . . . . . . . . . . . . . 296

14.6.2 Flexibility in frequency-band-of-operation . . . . . . . . . . . . 297

14.6.3 Bandwidth flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 

15 LTE radio interface architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29915.1 Radio link control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

15.2 Medium access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

15.2.1 Logical channels and transport channels . . . . . . . . . . . . . . 303

15.2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

15.2.3 Hybrid ARQ with soft combining . . . . . . . . . . . . . . . . . . . 308

15.3 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

15.4 Terminal states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

15.5 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 

16 Downlink transmission scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31716.1 Overall time-domain structure and duplex alternatives . . . . . . . . . 317

16.2 The downlink physical resource . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

16.3 Downlink reference signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

16.3.1 Cell-specific downlink reference signals . . . . . . . . . . . . . . 325

16.3.2 UE-specific reference signals . . . . . . . . . . . . . . . . . . . . . . . 328

16.4 Downlink L1/L2 control signaling . . . . . . . . . . . . . . . . . . . . . . . . . 330

16.4.1 Physical Control Format Indicator Channel . . . . . . . . . . . . 332

16.4.2 Physical Hybrid-ARQ Indicator Channel . . . . . . . . . . . . . 334

16.4.3 Physical Downlink Control Channel . . . . . . . . . . . . . . . . . 338

Contents

xi

16.4.4 Downlink scheduling assignment . . . . . . . . . . . . . . . . . . . . 340

16.4.5 Uplink scheduling grants . . . . . . . . . . . . . . . . . . . . . . . . . . 348

16.4.6 Power-control commands . . . . . . . . . . . . . . . . . . . . . . . . . . 352

16.4.7 PDCCH processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

16.4.8 Blind decoding of PDCCHs . . . . . . . . . . . . . . . . . . . . . . . . 357

16.5 Downlink transport-channel processing . . . . . . . . . . . . . . . . . . . . . 361

16.5.1 CRC insertion per transport block . . . . . . . . . . . . . . . . . . . 361

16.5.2 Code-block segmentation and per-code-block

CRC insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

16.5.3 Turbo coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

16.5.4 Rate-matching and physical-layer hybrid-ARQ

functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

16.5.5 Bit-level scrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

16.5.6 Data modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

16.5.7 Antenna mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

16.5.8 Resource-block mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 367

16.6 Multi-antenna transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

16.6.1 Transmit diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

16.6.2 Spatial multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

16.6.3 General beam-forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

16.7 MBSFN transmission and MCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 

17 Uplink transmission scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38317.1 The uplink physical resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

17.2 Uplink reference signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

17.2.1 Uplink demodulation reference signals . . . . . . . . . . . . . . . 385

17.2.2 Uplink sounding reference signals . . . . . . . . . . . . . . . . . . . 393

17.3 Uplink L1/L2 control signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

17.3.1 Uplink L1/L2 control signaling on PUCCH . . . . . . . . . . . 398

17.3.2 Uplink L1/L2 control signaling on PUSCH . . . . . . . . . . . . 411

17.4 Uplink transport-channel processing . . . . . . . . . . . . . . . . . . . . . . . 413

17.5 PUSCH frequency hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

17.5.1 Hopping based on cell-specific hopping/mirroring

patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

17.5.2 Hopping based on explicit hopping information . . . . . . . . 418 

18 LTE access procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42118.1 Acquisition and cell search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

18.1.1 Overview of LTE cell search . . . . . . . . . . . . . . . . . . . . . . . 421

18.1.2 PSS structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

18.1.3 SSS structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Contents

xii

18.2 System information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

18.2.1 MIB and BCH transmission . . . . . . . . . . . . . . . . . . . . . . . . 426

18.2.2 System-Information Blocks . . . . . . . . . . . . . . . . . . . . . . . . 429

18.3 Random access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

18.3.1 Step 1: Random-access preamble transmission . . . . . . . . . 434

18.3.2 Step 2: Random-access response . . . . . . . . . . . . . . . . . . . . 441

18.3.3 Step 3: Terminal identification . . . . . . . . . . . . . . . . . . . . . . 442

18.3.4 Step 4: Contention resolution . . . . . . . . . . . . . . . . . . . . . . . 443

18.4 Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 

19 LTE transmission procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44719.1 RLC and hybrid-ARQ protocol operation . . . . . . . . . . . . . . . . . . . 447

19.1.1 Hybrid-ARQ with soft combining . . . . . . . . . . . . . . . . . . . 448

19.1.2 Radio-link control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

19.2 Scheduling and rate adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

19.2.1 Downlink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

19.2.2 Uplink scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

19.2.3 Semi-persistent scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 476

19.2.4 Scheduling for half-duplex FDD . . . . . . . . . . . . . . . . . . . . 478

19.2.5 Channel-status reporting . . . . . . . . . . . . . . . . . . . . . . . . . . 479

19.3 Uplink power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

19.3.1 Power control for PUCCH . . . . . . . . . . . . . . . . . . . . . . . . . 482

19.3.2 Power control for PUSCH . . . . . . . . . . . . . . . . . . . . . . . . . 485

19.3.3 Power control for SRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

19.4 Discontinuous reception (DRX) . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

19.5 Uplink timing alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

19.6 UE categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 

20 Flexible bandwidth in LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49720.1 Spectrum for LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

20.1.1 Frequency bands for LTE . . . . . . . . . . . . . . . . . . . . . . . . . . 498

20.1.2 New frequency bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

20.2 Flexible spectrum use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

20.3 Flexible channel bandwidth operation . . . . . . . . . . . . . . . . . . . . . . 503

20.4 Requirements to support flexible bandwidth . . . . . . . . . . . . . . . . . 505

20.4.1 RF requirements for LTE . . . . . . . . . . . . . . . . . . . . . . . . . . 505

20.4.2 Regional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

20.4.3 BS transmitter requirements . . . . . . . . . . . . . . . . . . . . . . . . 507

20.4.4 BS receiver requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 511

20.4.5 Terminal transmitter requirements . . . . . . . . . . . . . . . . . . . 514

20.4.6 Terminal receiver requirements . . . . . . . . . . . . . . . . . . . . . 515

Contents

xiii 

21 System Architecture Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51721.1 Functional split between radio access network and core

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

21.1.1 Functional split between WCDMA/HSPA radio

access network and core network . . . . . . . . . . . . . . . . . . . . 518

21.1.2 Functional split between LTE RAN and core network . . . 519

21.2 HSPA/WCDMA and LTE radio access network . . . . . . . . . . . . . . . 520

21.2.1 WCDMA/HSPA radio access network . . . . . . . . . . . . . . . . 521

21.2.2 LTE radio access network . . . . . . . . . . . . . . . . . . . . . . . . . 526

21.3 Core network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

21.3.1 GSM core network used for WCDMA/HSPA . . . . . . . . . . 529

21.3.2 The Ў® SAE ЎЇ core network: The Evolved Packet Core . . . . . 533

21.3.3 WCDMA/HSPA connected to Evolved Packet Core . . . . . 536

21.3.4 Non-3GPP access connected to Evolved Packet Core . . . . 537 

22 LTE-Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53922.1 IMT-2000 development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

22.2 LTE-Advanced ЁC The 3GPP candidate for IMT-Advanced . . . . . . 540

22.2.1 Fundamental requirements for LTE-Advanced . . . . . . . . . 541

22.2.2 Extended requirements beyond ITU requirements . . . . . . . 542

22.3 Technical components of LTE-Advanced . . . . . . . . . . . . . . . . . . . . 542

22.3.1 Wider bandwidth and carrier aggregation . . . . . . . . . . . . . 543

22.3.2 Extended multi-antenna solutions . . . . . . . . . . . . . . . . . . . 544

22.3.3 Advanced repeaters and relaying functionality . . . . . . . . . 545

22.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 

Part V: Performance and Concluding Remarks 547

 

23 Performance of 3G evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54923.1 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

23.1.1 End-user perspective of performance . . . . . . . . . . . . . . . . . 550

23.1.2 Operator perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

23.2 Performance in terms of peak data rates . . . . . . . . . . . . . . . . . . . . . 552

23.3 Performance evaluation of 3G evolution . . . . . . . . . . . . . . . . . . . . 553

23.3.1 Models and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 553

23.3.2 Performance numbers for LTE with 5 MHz FDD carriers . 555

23.4 Evaluation of LTE in 3GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

23.4.1 LTE performance requirements . . . . . . . . . . . . . . . . . . . . . 557

23.4.2 LTE performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 559

23.4.3 Performance of LTE with 20 MHz FDD carrier . . . . . . . . . 560

23.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Contents

xiv 

24 Other wireless communications systems . . . . . . . . . . . . . . . . . . . . . . . 56324.1 UTRA TDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

24.2 TD-SCDMA (low chip rate UTRA TDD) . . . . . . . . . . . . . . . . . . . 565

24.3 CDMA2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

24.3.1 CDMA2000 1x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

24.3.2 1x EV-DO Rev 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

24.3.3 1x EV-DO Rev A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

24.3.4 1x EV-DO Rev B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

24.3.5 UMB (1x EV-DO Rev C) . . . . . . . . . . . . . . . . . . . . . . . . . . 571

24.4 GSM/EDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

24.4.1 Objectives for the GSM/EDGE evolution . . . . . . . . . . . . . 573

24.4.2 Dual-antenna terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

24.4.3 Multi-carrier EDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

24.4.4 Reduced TTI and fast feedback . . . . . . . . . . . . . . . . . . . . . . 576

24.4.5 Improved modulation and coding . . . . . . . . . . . . . . . . . . . 577

24.4.6 Higher symbol rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

24.5 WiMAX (IEEE 802.16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

24.5.1 Spectrum, bandwidth options and duplexing

arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

24.5.2 Scalable OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

24.5.3 TDD frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

24.5.4 Modulation, coding and Hybrid ARQ . . . . . . . . . . . . . . . . 581

24.5.5 Quality-of-service handling . . . . . . . . . . . . . . . . . . . . . . . . 582

24.5.6 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

24.5.7 Multi-antenna technologies . . . . . . . . . . . . . . . . . . . . . . . . 584

24.5.8 Fractional frequency reuse . . . . . . . . . . . . . . . . . . . . . . . . . 584

24.5.9 Advanced Air Interface (IEEE 802.16m) . . . . . . . . . . . . . . 585

24.6 Mobile Broadband Wireless Access (IEEE 802.20) . . . . . . . . . . . . 586

24.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 

25 Future evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58925.1 IMT-Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

25.2 The research community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

25.3 Standardization bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

25.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 

References 593

Index 603

Contents

xv 

List of Figures1.1 The standardization phases and iterative process. . . . . . . . . . . . . . . . . . . . 8

1.2 3GPP organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Releases of 3GPP specifications for UTRA. . . . . . . . . . . . . . . . . . . . . . . 11

1.4 The definition of IMT-2000 in ITU-R. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 The terminal development has been rapid the past 20 years. . . . . . . . . . 16

2.2 The bit rate ЁC delay service space that is important to cover

when designing a new cellular system. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 One HSPA and LTE deployment strategy: upgrade to HSPA

Evolution, then deploy LTE as islands in the WCDMA/HSPA sea. . . . 25

3.1 Minimum required Eb/N0 at the receiver as a function of

bandwidth utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Signal constellations for (a) QPSK, (b) 16QAM and (c) 64QAM. . . . . . 35

3.3 Distribution of instantaneous power for different modulation

schemes. Average power is same in all cases. . . . . . . . . . . . . . . . . . . . . . 37

3.4 Multi-path propagation causing time dispersion and radio-channel

frequency selectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Extension to wider transmission bandwidth by means of multicarrier

transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Theoretical WCDMA spectrum. Raised-cosine shape with roll-off. . . . . . . . . . . . . . 41

4.1 (a) Per-subcarrier pulse shape and (b) spectrum for basic OFDM

transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 OFDM subcarrier spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 OFDM modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 OFDM timeЁCfrequency grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Basic principle of OFDM demodulation. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 OFDM modulation by means of IFFT processing. . . . . . . . . . . . . . . . . . 48

4.7 OFDM demodulation by means of FFT processing. . . . . . . . . . . . . . . . . 49

4.8 Time dispersion and corresponding received-signal timing. . . . . . . . . . . 50

4.9 Cyclic-prefix insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Frequency-domain model of OFDM transmission/reception. . . . . . . . . . 52

4.11 Frequency-domain model of OFDM transmission/reception with

Ў® one-tap equalization ЎЇ at the receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Time-frequency grid with known reference symbols. . . . . . . . . . . . . . . . 53

xvi

4.13 (a) Transmission of single wideband carrier and (b) OFDM

transmission over a frequency-selective channel. . . . . . . . . . . . . . . . . . . 54

4.14 Channel coding in combination with frequency-domain interleaving

to provide frequency diversity in case of OFDM transmission. . . . . . . . 55

4.15 Subcarrier interference as a function of the normalized Doppler

spread fDoppler / ¦¤f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.16 Spectrum of a basic 5 MHz OFDM signal compared with WCDMA

spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.17 OFDM as a user-multiplexing/multiple-access scheme: (a) downlink

and (b) uplink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.18 Distributed user multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.19 Uplink transmission-timing control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.20 Broadcast scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.21 Broadcast vs. Unicast transmission. (a) Broadcast and (b) Unicast. . . . . 62

4.22 Equivalence between simulcast transmission and multi-path

propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 General time-domain linear equalization. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Linear equalization implemented as a time-discrete FIR filter.. . . . . . . . 67

5.3 Frequency-domain linear equalization. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Overlap-and-discard processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Cyclic-prefix insertion in case of single-carrier transmission. . . . . . . . . 70

5.6 Orthogonal multiple access: (a) TDMA and (b) FDMA. . . . . . . . . . . . . 72

5.7 FDMA with flexible bandwidth assignment. . . . . . . . . . . . . . . . . . . . . . 73

5.8 DFTS-OFDM signal generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.9 PAR distribution for OFDM and DFTS-OFDM, respectively.

Solid curve: QPSK. Dashed curve: 16QAM. . . . . . . . . . . . . . . . . . . . . . 75

5.10 Basic principle of DFTS-OFDM demodulation. . . . . . . . . . . . . . . . . . . . 76

5.11 DFTS-OFDM demodulator with frequency-domain equalization. . . . . . 77

5.12 Uplink user multiplexing in case of DFTS-OFDM. (a) Equalbandwidth

assignment and (b) unequal-bandwidth assignment. . . . . . . . 78

5.13 Localized DFTS-OFDM vs. Distributed DFTS-OFDM. . . . . . . . . . . . . 78

5.14 Spectrum of localized and distributed DFTS-OFDM signals. . . . . . . . . 79

5.15 User multiplexing in case of localized and distributed DFTS-OFDM. . . 79

6.1 Linear receive-antenna combining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Linear receive-antenna combining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Downlink scenario with a single dominating interferer (special

case of only two receive antennas). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Receiver scenario with one strong interfering mobile terminal:

(a) Intra-cell interference and (b) Inter-cell interference. . . . . . . . . . . . . 86

6.5 Two-dimensional space/time linear processing (two receive antennas). . 87

List of Figures

xvii

6.6 Two-dimensional space/frequency linear processing (two receive

antennas). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Two-antenna delay diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.8 Two-antenna Cyclic-Delay Diversity (CDD). . . . . . . . . . . . . . . . . . . . . . 90

6.9 WCDMA SpaceЁCTime Transmit Diversity (STTD). . . . . . . . . . . . . . . . . 91

6.10 SpaceЁCFrequency Transmit Diversity assuming two transmit

antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.11 Classical beam-forming with high mutual antennas correlation:

(a) antenna configuration and (b) beam-structure. . . . . . . . . . . . . . . . . . 93

6.12 Pre-coder-based beam-forming in case of low mutual antenna

correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.13 Per-subcarrier pre-coding in case of OFDM (two transmit

antennas). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.14 2 2-antenna configuration.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.15 Linear reception/demodulation of spatially multiplexed signals. . . . . . . 99

6.16 Pre-coder-based spatial multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.17 Orthogonalization of spatially multiplexed signals by means of

pre-coding. ¦Лi,i is the i th eigenvalue of the matrix HH H . . . . . . . . . . . . 101

6.18 Single-codeword transmission (a) vs. multi-codeword

transmission (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.19 Demodulation/decoding of spatially multiplexed signals based on

Successive Interference Cancellation. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 (a) Power control and (b) rate control. . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Channel-dependent scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Example of three different scheduling behaviors for two users with

different average channel quality: (a) max C/I, (b) round robin, and

(c) proportional fair. The selected user is shown with bold lines. . . . . . 110

7.4 Illustration of the principle behavior of different scheduling strategies:

(a) for full buffers and (b) for web browsing traffic model. . . . . . . . . . 119

7.5 Example of Chase combining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6 Example of incremental redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1 WCDMA evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 WCDMA radio-access network architecture. . . . . . . . . . . . . . . . . . . . . 130

8.3 WCDMA protocol architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4 Simplified view of physical layer processing in WCDMA. . . . . . . . . . 133

8.5 Channelization codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.1 Time- and code-domain structure for HS-DSCH. . . . . . . . . . . . . . . . . . 140

9.2 Channel-dependent scheduling for HSDPA. . . . . . . . . . . . . . . . . . . . . . 141

9.3 Illustration of the HSDPA architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 143

List of Figures

xviii

9.4 Dynamic power usage with HS-DSCH. . . . . . . . . . . . . . . . . . . . . . . . . 145

9.5 Channel structure with HSDPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.6 MAC-hs and physical-layer processing. . . . . . . . . . . . . . . . . . . . . . . . . 148

9.7 Priority handling in the scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.8 Transport-block sizes vs. the number of channelization codes for

QPSK and 16QAM modulation. The transport-block sizes used for

CQI reporting are also illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.9 Generation of redundancy versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.10 Multiple hybrid-ARQ process (six in this example). . . . . . . . . . . . . . . 156

9.11 Protocol configuration when HS-DSCH is assigned. The numbers

in the rightmost part of the figure corresponds to the numbers to

the right in Figure 9.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.12 Data flow at UTRAN side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.13 Measurements and resource limitations for HSDPA. . . . . . . . . . . . . . . 160

9.14 Change of serving cell for HSPA. It is assumed that both the

source and target NodeB are part of the active set. . . . . . . . . . . . . . . . . 161

9.15 The principle of two-stage rate matching. . . . . . . . . . . . . . . . . . . . . . . . 164

9.16 An example of the generation of different redundancy versions in

the case of IR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.17 The channel interleaver for the HS-DSCH. . . . . . . . . . . . . . . . . . . . . . . 168

9.18 The priority queues in the NodeB MAC-hs (left) and the

reordering queues in the UE MAC-hs (right). . . . . . . . . . . . . . . . . . . . . 171

9.19 Illustration of the principles behind reordering queues. . . . . . . . . . . . . 171

9.20 The structure of the MAC-hs header. . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.21 Timing relation for the CQI reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.22 HS-SCCH channel coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.23 Fractional DPCH (F-DPCH), introduced in Release 6. . . . . . . . . . . . . . 180

9.24 Basic structure of uplink signaling with IQ/code-multiplexed

HS-DPCCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.25 Detection threshold for the ACK/NAK field of HS-DPCCH. . . . . . . . . 183

9.26 Enhanced ACK/NAK using PRE and POST. . . . . . . . . . . . . . . . . . . . . 183

10.1 Enhanced Uplink scheduling framework. . . . . . . . . . . . . . . . . . . . . . . . 187

10.2 The architecture with E-DCH (and HS-DSCH) configured. . . . . . . . . . 190

10.3 Separate processing of E-DCH and DCH. . . . . . . . . . . . . . . . . . . . . . . 191

10.4 Overall channel structure with HSDPA and Enhanced Uplink.

The new channels introduced as part of Enhanced Uplink are

shown with dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.5 MAC-e and physical-layer processing. . . . . . . . . . . . . . . . . . . . . . . . . . 194

10.6 Overview of the scheduling operation. . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.7 The relation between absolute grant, relative grant and serving

grant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

10.8 Illustration of relative grant usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

List of Figures

xix

10.9 Illustration of the E-TFC selection process. . . . . . . . . . . . . . . . . . . . . 203

10.10 Synchronous vs. asynchronous hybrid ARQ. . . . . . . . . . . . . . . . . . . . 205

10.11 Multiple hybrid ARQ processes for Enhanced Uplink. . . . . . . . . . . . . 206

10.12 Retransmissions in soft handover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.13 Code allocation in case of simultaneous E-DCH and HS-DSCH

operation (note that the code allocation is slightly different when

no HS-DPCCH is configured). Channels with SF 4 are shown

on the corresponding SF4 branch for illustrative purposes. . . . . . . . . 209

10.14 Data flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10.15 Illustration of the resource sharing between E-DCH and DCH

channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

10.16 The relation between absolute grant, relative grant and serving

grant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

10.17 Illustration of UE monitoring of the two identities. . . . . . . . . . . . . . . 215

10.18 Example of common and dedicated scheduling. . . . . . . . . . . . . . . . . . 216

10.19 Grant table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.20 Example of activation of individual hybrid ARQ processes. . . . . . . . 218

10.21 E-TFC selection and hybrid ARQ profiles. . . . . . . . . . . . . . . . . . . . . . 222

10.22 E-DCH rate matching and the r and s parameters. The bit

collection procedure is identical to the QPSK bit collection

for HS-DSCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10.23 Amount of puncturing as a function of the transport block

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.24 Mapping from RSN via RV to s and r. . . . . . . . . . . . . . . . . . . . . . . . . . 226

10.25 Reordering mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

10.26 Structure and format of the MAC-e/es PDU. . . . . . . . . . . . . . . . . . . . 230

10.27 E-DCH-related out-band control signaling. . . . . . . . . . . . . . . . . . . . . . 231

10.28 E-HICH and E-RGCH structures (from the serving cell). . . . . . . . . . . 232

10.29 Illustration of signature sequence hopping. . . . . . . . . . . . . . . . . . . . . . 233

10.30 E-AGCH coding structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

10.31 Timing relation for downlink control channels, 10 ms TTI. . . . . . . . . 236

10.32 Timing relation for downlink control channels, 2 ms TTI. . . . . . . . . . 237

10.33 E-DPCCH coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

11.1 Example of MBMS services. Different services are provided in

different areas using broadcast in cells 1ЁC4. In cell 5, unicast is

used as there is only single user subscribing to the MBMS

service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

11.2 Example of typical phases during an MBMS session. The

dashed phases are only used in case of multicast and not for

broadcast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

11.3 The gain with soft combining and multi-cell reception in

terms of coverage vs. power for 64 kbit/s MBMS service

List of Figures

xx

(vehicular A, 3 km/h, 80 ms TTI, single receive antenna, no transmit

diversity, 1% BLER). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

11.4 Illustration of the principles for (a) soft combining and (b) selection

combining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

11.5 Illustration of application-level coding. Depending on their

different ratio conditions, the number of coded packets required for

the UEs to be able to reconstruct the original information differs. . . . 246

11.6 Illustration of data flow through RLC, MAC, and L1 in the network

side for different transmission scenarios. . . . . . . . . . . . . . . . . . . . . . . 248

11.7 MCCH transmission schedule. Different shades indicate (potentially)

different MCCH content, e.g. different combinations of services. . . . 248

12.1 HS-DSCH processing in case of MIMO transmission. . . . . . . . . . . . . 253

12.2 Modulation, spreading, scrambling and pre-coding for two dualstream

MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

12.3 HS-SCCH information in case of MIMO support. The gray

shaded information is added compared to Release 5. . . . . . . . . . . . . . 257

12.4 Example of type A and type B PCI/CQI reporting for a UE

configured for MIMO reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

12.5 WCDMA state model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

12.6 Example of uplink DTX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

12.7 CQI reporting in combination with uplink DTX. . . . . . . . . . . . . . . . . 263

12.8 Example of simultaneous use of uplink DTX and downlink

DRX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

12.9 Example of retransmissions with HS-SCCH-less operation. . . . . . . . 267

12.10 Median HSDPA data rate in a mildly dispersive propagation

channel for UEs with 15 channelization codes (from [112]). . . . . . . . 273

13.1 LTE and HSPA Evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

13.2 The original IMT -2000 Ў® core band ЎЇ spectrum allocations at

2 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

14.1 Downlink channel-dependent scheduling in time and frequency

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

14.2 Example of inter-cell interference coordination. . . . . . . . . . . . . . . . . . 293

14.3 Frequency- and time-division duplex. . . . . . . . . . . . . . . . . . . . . . . . . . 296

15.1 LTE protocol architecture (downlink). . . . . . . . . . . . . . . . . . . . . . . . . 300

15.2 RLC segmentation and concatenation. . . . . . . . . . . . . . . . . . . . . . . . . 302

15.3 Downlink channel mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

15.4 Uplink channel mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

15.5 Transport-format selection in (a) downlink and (b) uplink. . . . . . . . . 306

15.6 Multiple parallel hybrid-ARQ processes. . . . . . . . . . . . . . . . . . . . . . . 310

15.7 Simplified physical-layer processing for DL-SCH. . . . . . . . . . . . . . . . 311

List of Figures

xxi

15.8 LTE states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

15.9 Example of LTE data flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

16.1 LTE high-level time-domain structure. . . . . . . . . . . . . . . . . . . . . . . . . 318

16.2 Uplink/downlink time/frequency structure in case of FDD

and TDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

16.3 Different downlink/uplink configurations in case of TDD. . . . . . . . . . 320

16.4 The LTE downlink physical resource. . . . . . . . . . . . . . . . . . . . . . . . . . 321

16.5 Frequency-domain structure for LTE downlink. . . . . . . . . . . . . . . . . . 322

16.6 Detailed time-domain structure for LTE downlink transmission. . . . . 322

16.7 Downlink resource block assuming normal cyclic prefix (i.e. seven

OFDM symbols per slot). With extended cyclic prefix there are six

OFDM symbols per slot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

16.8 Structure of cell-specific reference signal within a pair of resource

blocks (normal cyclic prefix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

16.9 Different reference-signal frequency shifts. . . . . . . . . . . . . . . . . . . . . 327

16.10 Cell-specific reference signals in case of multi-antenna

transmission: (a) two antenna ports and (b) four antenna ports. . . . . . 328

16.11 Structure of UE-specific reference signal within a pair of resource

blocks (normal cyclic prefix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

16.12 LTE time/frequency grid illustrating the split of the subframe into

(variable-sized) control and data regions. . . . . . . . . . . . . . . . . . . . . . . 331

16.13 Overview of the PCFICH processing. . . . . . . . . . . . . . . . . . . . . . . . . . 333

16.14 Numbering of resource-element groups in the control region

(assuming a size of three OFDM symbols). . . . . . . . . . . . . . . . . . . . . 334

16.15 Example of PCFICH mapping in the first OFDM symbol for

three different physical-layer cell identities. . . . . . . . . . . . . . . . . . . . . 335

16.16 PHICH structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

16.17 Overview of DCI formats for downlink scheduling (FDD). . . . . . . . . 341

16.18 Illustration of resource-block allocation types (cell bandwidth

corresponding to 25 resource blocks used in this example). . . . . . . . . 345

16.19 Number of bits used for resource allocation signaling for

allocation types 0/1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

16.20 Computing the transport-block size. . . . . . . . . . . . . . . . . . . . . . . . . . . 349

16.21 Timing relation for uplink grants in FDD and TDD configuration 0 . . 351

16.22 Processing of L1/L2 control signaling. . . . . . . . . . . . . . . . . . . . . . . . . 353

16.23 CCE aggregation and PDCCH multiplexing. . . . . . . . . . . . . . . . . . . . 355

16.24 Example of mapping of PCFICH, PHICH, and PDCCH. . . . . . . . . . . 357

16.25 Principal illustration of search spaces in two terminals. . . . . . . . . . . . 359

16.26 LTE downlink transport-channel processing. Dashed parts are

only present in case of spatial multiplexing, that is when two

transport blocks are transmitted in parallel within a TTI. . . . . . . . . . . 362

List of Figures

xxii

16.27 Code-block segmentation and per-code-block CRC insertion. . . . . . . 363

16.28 LTE Turbo encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

16.29 Principles of QPP-based interleaving. . . . . . . . . . . . . . . . . . . . . . . . . 364

16.30 Rate-matching and hybrid-ARQ functionality. . . . . . . . . . . . . . . . . . . 365

16.31 VRB-to-PRB mapping in case of localized VRBs. Figure assumes

a cell bandwidth corresponding to 25 resource blocks. . . . . . . . . . . . . 369

16.32 VRB-to-PRB mapping in case of distributed VRBs. Figure

assumes a cell bandwidth corresponding to 25 resource blocks.. . . . . 370

16.33 Two-antenna-port transmit diversity ЁC SFBC. . . . . . . . . . . . . . . . . . . . 372

16.34 Four-antenna-port transmit diversity ЁC combined SFBC/FSTD. . . . . . 373

16.35 The basic structure of LTE closed-loop spatial multiplexing. . . . . . . . 374

16.36 Codeword-to-layer mapping for spatial multiplexing. . . . . . . . . . . . . 374

16.37 Open-loop spatial multiplexing ( Ў® large-delay CDD ЎЇ ). . . . . . . . . . . . . . 376

16.38 Resource-block structure for MBSFN subframes, assuming

normal cyclic prefix for the unicast part. . . . . . . . . . . . . . . . . . . . . . . . 379

16.39 Reference-signal structure for MBSFN subframes.. . . . . . . . . . . . . . . 380

17.1 Basic principles of DFTS-OFDM for LTE uplink transmission.. . . . . 384

17.2 Frequency-domain structure for LTE uplink. . . . . . . . . . . . . . . . . . . . 385

17.3 Detailed time-domain structure for LTE uplink transmission. . . . . . . 386

17.4 Transmission of uplink reference signals within a slot in case of

PUSCH transmission (normal cyclic prefix). . . . . . . . . . . . . . . . . . . . 387

17.5 Generation of uplink reference signal from a frequency-domain

reference-signal sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

17.6 Generation of uplink reference-signal sequence from linear phase

rotation of a basic reference-signal sequence. . . . . . . . . . . . . . . . . . . . 390

17.7 Grouping of reference-signal sequences into sequence groups.

The number indicates the corresponding bandwidth in number of

resource blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

17.8 Transmission of SRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

17.9 Non-frequency-hopping (wideband) SRS versus frequencyhopping

SRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

17.10 Generation of SRS from a frequency-domain reference-signal

sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

17.11 Multiplexing of SRS transmissions from different mobile terminals. . 396

17.12 Uplink L1/L2 control signaling transmission on PUCCH. . . . . . . . . . 398

17.13 PUCCH format 1 (normal cyclic prefix). . . . . . . . . . . . . . . . . . . . . . . 401

17.14 Example of phase rotation and cover hopping for two PUCCH

resource indices in two different cells. . . . . . . . . . . . . . . . . . . . . . . . . 403

17.15 Multiplexing of scheduling request and hybrid-ARQ

acknowledgement from a single terminal. . . . . . . . . . . . . . . . . . . . . . . 405

17.16 PUCCH format 2 (normal cyclic prefix). . . . . . . . . . . . . . . . . . . . . . . 406

List of Figures

xxiii

17.17 Simultaneous transmission of channel-status reports and

hybrid-ARQ acknowledgements: (a) normal cyclic prefix and (b)

extended cyclic prefix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

17.18 Allocation of resource blocks for PUCCH. . . . . . . . . . . . . . . . . . . . . . 410

17.19 Multiplexing of control and data onto PUSCH. . . . . . . . . . . . . . . . . . 412

17.20 Uplink transport-channel processing. . . . . . . . . . . . . . . . . . . . . . . . . . 414

17.21 Definition of subbands for PUSCH hopping. A total of four

subbands, each consisting of eleven resource blocks. . . . . . . . . . . . . . 416

17.22 Hopping according to predefined hopping pattern. . . . . . . . . . . . . . . . 417

17.23 Hopping/mirroring according to predefined hopping/mirroring

patterns. Same hopping pattern as in Figure 17.22. . . . . . . . . . . . . . . . 417

17.24 Frequency hopping according to explicit hopping information. . . . . . 418

18.1 Time-domain positions of PSSs in case of FDD and TDD. . . . . . . . . 422

18.2 Definition and structure of PSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

18.3 Definition and structure of SSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

18.4 Channel coding and subframe mapping for the BCH transport

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

18.5 Detailed resource mapping for the BCH transport channel. . . . . . . . . 428

18.6 Example of mapping of SIBs to SIs. . . . . . . . . . . . . . . . . . . . . . . . . . . 431

18.7 Transmission window for the transmission of an SI. . . . . . . . . . . . . . . 431

18.8 Overview of the random-access procedure. . . . . . . . . . . . . . . . . . . . . . 433

18.9 Preamble subsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

18.10 Principal illustration of random-access-preamble

transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

18.11 Different preamble formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

18.12 Random-access preamble generation. . . . . . . . . . . . . . . . . . . . . . . . . . 440

18.13 Random-access preamble detection in the frequency domain. . . . . . . 441

18.14 DRX for paging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

19.1 Multiple parallel hybrid-ARQ processes. . . . . . . . . . . . . . . . . . . . . . . 449

19.2 Non-adaptive and adaptive hybrid-ARQ operation. . . . . . . . . . . . . . . 454

19.3 Timing relation between downlink data in subframe n and uplink

hybrid-ARQ acknowledgement in subframe n 4 for FDD. . . . . . . . 456

19.4 Example of timing relation between downlink data and uplink

hybrid-ARQ acknowledgement for TDD (configuration 2). . . . . . . . . 459

19.5 MAC and RLC structure (single-terminal view). . . . . . . . . . . . . . . . . 460

19.6 Generation of RLC PDUs from RLC SDUs. . . . . . . . . . . . . . . . . . . . . 461

19.7 In-sequence delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

19.8 Retransmission of missing PDUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

19.9 Transport format selection in downlink (left) and uplink (right). . . . . 466

List of Figures

xxiv

19.10 MAC header and SDU multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . 469

19.11 Prioritization of two logical channels for three different uplink

grants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

19.12 Scheduling request transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

19.13 Buffer status and power headroom reports. . . . . . . . . . . . . . . . . . . . . . 474

19.14 Example of uplink inter-cell interference coordination. . . . . . . . . . . . 476

19.15 Example of semi-persistent scheduling. . . . . . . . . . . . . . . . . . . . . . . . 477

19.16 Example of half-duplex FDD terminal operation. . . . . . . . . . . . . . . . . 478

19.17 Full vs. partial path-loss compensation. Solid curve. Full compensation ; Dashed curve: Partial compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

19.18 Illustration of DRX operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

19.19 Uplink timing advance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

19.20 Timing relation for TDD operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 493

19.21 Coexistence between TD-SCDMA and LTE. . . . . . . . . . . . . . . . . . . . 494

20.1 Operating bands specified in 3GPP above 1 GHz and the

corresponding ITU allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

20.2 Operating bands specified in 3GPP below 1 GHz and the

corresponding ITU allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

20.3 Example of how LTE can be migrated step-by-step into a

spectrum allocation with an original GSM deployment. . . . . . . . . . . . 503

20.4 The channel bandwidth for one RF carrier and the corresponding

transmission bandwidth configuration. . . . . . . . . . . . . . . . . . . . . . . . . 505

20.5 Defined frequency ranges for spurious emissions and operating

band unwanted emissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

20.6 Definitions of ACLR and ACS, using example characteristics of

an Ў® aggressor ЎЇ interfering and a Ў® victim ЎЇ wanted signal. . . . . . . . . . . . 510

20.7 Requirements for receiver susceptibility to interfering signals in

terms of blocking, ACS, narrowband blocking, and in-channel

selectivity (ICS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

21.1 Radio access network and core network. . . . . . . . . . . . . . . . . . . . . . . . 517

21.2 Transport network topology influencing functional allocation. . . . . . 521

21.3 WCDMA/HSPA radio access network: nodes and interfaces. . . . . . . 522

21.4 Roles of the RNC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

21.5 LTE radio access network: nodes and interfaces. . . . . . . . . . . . . . . . . 527

21.6 Overview of GSM and WCDMA/HSPA core network ЁC

somewhat simplified figure.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

21.7 Roaming in GSM/and WCDMA/HSPA. . . . . . . . . . . . . . . . . . . . . . . . 532

21.8 Overview of SAE core network ЁC simplified figure. . . . . . . . . . . . . . . 533

21.9 Roaming in LTE/EPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

List of Figures

xxv

21.10 WCDMA/HSPA connected to LTE/SAE. . . . . . . . . . . . . . . . . . . . . . . 536

21.11 CDMA/HRPD connected to LTE/SAE.. . . . . . . . . . . . . . . . . . . . . . . . 538

22.1 Current time schedule for IMT-Advanced within ITU. . . . . . . . . . . . . 540

22.2 3GPP time schedule for LTE-Advanced in relation to ITU time

schedule on IMT-Advanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

22.3 LTE carrier aggregation for extension to wider overall

transmission bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

22.4 Carrier aggregation as a tool for spectrum aggregation and

efficient utilization of fragmented spectrum. . . . . . . . . . . . . . . . . . . . . 544

22.5 Coordinated multi-point transmission. . . . . . . . . . . . . . . . . . . . . . . . . 545

22.6 Relaying as a tool to improve the coverage of high data rates

in a cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

23.1 Definitions of data rates for performance. . . . . . . . . . . . . . . . . . . . . . . 551

23.2 Mean and cell-edge downlink user throughput vs. served traffic,

Typical Urban propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

23.3 Mean and cell-edge downlink user throughput vs. served traffic,

Pedestrian A propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

23.4 Mean and cell-edge uplink user throughput vs. served traffic,

Typical Urban propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

23.5 Mean and cell-edge uplink user throughput vs. served traffic,

Pedestrian A propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

23.6 Mean downlink user throughput vs. spectral efficiency for 5 and

20 MHz LTE carriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

24.1 The wireless technologies discussed in this book . . . . . . . . . . . . . . . . 564

24.2 The evolution from IS-95 to CDMA2000 1x and 1x EV-DO.. . . . . . . 566

24.3 In 1x EV-DO Rev B, multi-carrier operation can occur on multiple

independent BS channel cards to allow a simple upgrade of

existing base stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

24.4 UMB enables multiplexing of OFDMA and CDMA traffic on

the uplink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

24.5 GSM/EDGE network structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

24.6 Existing and new modulation schemes for GSM/EDGE . . . . . . . . . . . 576

24.7 Example OFDMA frame structure for WiMAX (TDD) . . . . . . . . . . . 582

24.8 Fractional frequency reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

25.1 Illustration of capabilities of IMT-2000 and systems beyond

IMT-2000, based on the framework described in ITU -R

Recommendation a M.1645 [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

List of Figures

This page intentionally left blank 

List of Tables9.1 HSDPA UE categories [99]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.2 Example of CQI reporting for two different UE categories [97]. . . . . . 175

10.1 Possible physical channel configurations. . . . . . . . . . . . . . . . . . . . . . . . 210

10.2 E-DCH UE categories [99]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.3 Minimum UE and NodeB processing time. . . . . . . . . . . . . . . . . . . . . . 237

11.1 Requirements on UE processing for MBMS reception [99]. . . . . . . . . 245

12.1 Peak rates in downlink and uplink with higher order modulation and

MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

12.2 Advanced receiver requirements in the 3GPP UE performance

specification [92]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

13.1 LTE user throughput and spectrum efficiency requirements. . . . . . . . . 282

13.2 Interruption time requirements, LTE ЁC GSM and LTE ЁC

WCDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

16.1 DCI formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

16.2 Gap size for different cell bandwidths. . . . . . . . . . . . . . . . . . . . . . . . . . 371

16.3 Second gap size for different cell bandwidth (only applicable to

bandwidths 50 RBs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

16.4 LTE pre-coder matrices W in case of two antenna ports. . . . . . . . . . . . 375

19.1 Number of hybrid-ARQ processes and uplink acknowledgement

timing k for different TDD configurations. . . . . . . . . . . . . . . . . . . . . . . 458

19.2 Resulting guard period for different DwPTS and UpPTS lengths

(normal cyclic prefix). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

19.3 UE categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

20.1 Paired frequency bands defined by 3GPP for LTE. . . . . . . . . . . . . . . . . 498

20.2 Unpaired frequency bands defined by 3GPP for LTE. . . . . . . . . . . . . . 499

20.3 Channel bandwidths specified in LTE. . . . . . . . . . . . . . . . . . . . . . . . . . 505

23.1 Models and assumptions for the evaluations (from [122]). . . . . . . . . . . 554

23.2 LTE performance targets in [86, 93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

xxvii

xxviii

23.3 Assumptions for the results in Figure 23.6, in addition to the

ones in [57]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

24.1 Combinations of modulation schemes and symbol rates in

GSM/EDGE evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578


Форумы по теме (открыть в отдельном окне)

Ещё »



Поиск по сайту:

Подписка:

Подписаться
Отписаться


Новости

29.11. [Новинки] Анонсы: Vivo S20 и S20 Pro представлены официально / MForum.ru

28.11. [Новинки] Анонсы: Представлены Huawei Mate 70 Pro+ и 70 RS в титановом корпусе / MForum.ru

28.11. [Новинки] Анонсы: Redmi K80 Pro – смартфон с чипсетом Snapdragon 8 Elite за $500 / MForum.ru

28.11. [Новинки] Анонсы: Представителен Lava Yuva 4 с 50-мегапиксельной камерой и экраном 90 Гц / MForum.ru

27.11. [Новинки] Анонсы: Прочный смартфон Realme C75 представлен официально / MForum.ru

26.11. [Новинки] Анонсы: Oppo Pad 3 на базе MediaTek Dimensity 8350 представлен официально / MForum.ru

26.11. [Новинки] Анонсы: Представлены Reno 13 и Reno 13 Pro – первые смартфоны на базе Dimensity 8350 / MForum.ru

25.11. [Новинки] Анонсы: Представлен Vivo Y300 5G с 50-мегапиксельной основной камерой / MForum.ru

25.11. [Новинки] Слухи: Moto G 5G (2025) замечен на рендерах / MForum.ru

22.11. [Новинки] Слухи: Google отменила Pixel Tablet 2, а не Pixel Tablet 3 / MForum.ru

22.11. [Новинки] Анонсы: Nubia Z70 Ultra дебютирвал с SD 8 Elite и 35-миллиметровой основной камерой с переменной апертурой / MForum.ru

21.11. [Новинки] Анонсы: Oppo Find X8 и X8 Pro выходят на глобальный рынок / MForum.ru

21.11. [Новинки] Слухи: Google отменяет Pixel Tablet 3 / MForum.ru

20.11. [Новинки] Слухи: Reno 13 и Reno 13 Pro замечены в Geekbench / MForum.ru

20.11. [Новинки] Слухи: Nubia Z70 Ultra с впечатляющей камерой представят 21 ноября / MForum.ru

19.11. [Новинки] Анонсы: Представлен ZTE Blade V70 с основной камерой 108 МП и аналогом Dynamic Island / MForum.ru

19.11. [Новинки] Слухи: HMD Icon Flip 1 готовится к анонсу / MForum.ru

18.11. [Новинки] Слухи: Samsung Galaxy A36 получит улучшенную фронтальную камеру / MForum.ru

18.11. [Новинки] Слухи: Vivo Y300 5G появился на «живых» фото / MForum.ru

15.11. [Новинки] Слухи: Стали известные некоторые спецификации Realme C75 / MForum.ru